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The problens of homogenization of (1) concerns the beharinur of the solutions o
:bd&mhrprvblﬂnfvl(l:numd.vmmh-hmh\hmw:ﬁxn
equation for (1) always exists and i is of the form x'=p

hum] [21]). In the spice dimension n> 1, the homogenized syem generslly
does not exist, The charactecization of imits of solutions of (1), 23 ¢ tends to 2¢50, &
m,duemummmkmmmn&mmmmqmdmw
tionx" = i, a)mmw“&mmm‘-ﬁmzmnﬂmm
iocly soded by mam aubos (sec ‘nmdu['-m 161,113,021 =nd 18]}
s t0 show (see (4) that I' limits of functionals F, and G, esist in
L7100, 1) und L343 topologies, respectively, and are of the form

Rl = [du'm
b

Gy = [ 3 oo,
Jurd

'Latyhlmwpw,mxmmmﬂ'ﬂﬂh,}unu'|IK(u+I)uu|
, symmetnic. and postive semidefinite matrix. The family of functionals G, was
“oiderd th by Do Glogl {8
We prove, in the ane dimensional case, that the function ¢ has exactly oo xcro
and it i p, the resation muesber of (1), We o show that functional Gy s of the form

;|‘|.~+,,,|=aa,mmcm“mmwwwm.mwm

) has 20 absohitely continuous twith respect 10 Lebesgoe messure] imvariant
measure with L? densiy. 16 in (1) depend only on x (sutonomous case), It is possible
o calculte the vao of &k et & = 011/ % 0 or fix) = 0 for every s & R. The sectorisl
case (n > 1) is much more complicused. In this sioustion, it s proved that the set of
se0 points of  conisins the set of rotation vectors.

In the last section we will show that for the reo dimensiooal system

x"=0,
{:'-:(E]. x7aR, e C'R) und period,

the homogenized cquation docs not exist. Let us underline that in this cae the st
querce of sohions of the correspanding s ordes livear byperbolic equation

&
Tl
210, %, y) = #lx.3), ¢ given

s weskly comergent, The identification of the i equation, us « tends to 2¢7o, s
die 10 Tortar (sce (231, [24]). The case when the fanction ¢ depends also on 1 was
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whmhwmhwmmhrwk

by Mascarenhas in (18], (17).

We would ke to thank Prof. De Giorg for suggesting us this

hiﬂmwmmwmdkﬁmmﬂhmm
shout the pa

Lot B o 1) be the - icemonel Euclidonn e v be the Lebesgue
mwkhmnﬂhmmdk‘hwwllwaqw
spectively, We write T = [0, 1],

By u I perindi function e mean & fancrion on R* which s periodic with period
1%, Le. with period 1 in each variable. If £ is an open subset of R, for 7= 0, 1, ... and
k= 1,2, ... we denate by C*(E}* the space of functions from E into R that are conti-
md,d:ﬁmmmﬁgnpblhﬂhmdn’C’EE]‘-C‘IE).mmC"{Ei‘-ﬂIBe

miform

3
e oo €1 R st e sy of Bt 5 €1 U kg s

supports.

I £ R*— R is & diferemviable funciion, then the noxation D) stands foe the
ll)l]mHu muix of f.ar 3 For f R+ K, we ser {f=0) = {ie R [2) =
= 0]

For any subsct A of R we denate by com(4) the convex bl of A, 1F.X i  Bana-
ch gpace, we denote the stzoog ad the weak topology In X, by 1 — X, v — X, respect-
ively. The vectors (e represcin the canonical basis of R For cach x.e &, we write
x~ mx = I, where [z, is the vector composed of the integer parts of the compo-

nenss of x.
Givenfe G (R** P and & > 0, we denote by T3 b the value of the solusion 10
the problesm

“ O =%
ut the time £ I is well know (sce for example [6], [14]) that T, i a diffeomorphism




—ak—
from R 0 R and the following propertis hold:
T = T %), WicR, WeeR,
] TEia=TE s, WeR, Yeak', Viaz',
Tiek=TyuTi, WieR, keZ,

where T, =T,

o e T e = To TV sl Wb T2 S e oty
mapping, T = T{" and T~* wtands for the lmverss of T*.
Poincaré map ssociated 10 (3).

We admit the following

Drrnermon 21 (e (9L QOLIZO) - We wy, dhat dbe fomly of sorems (3),
(4), G-comwerges i the system
(6) xmp,
o for every ;& R she solusions T\ (xo) comverge, as ¢ — 0, amiformely with respect 10 1
o coupact meoals 10 cbe sodution of iial roblen 16, 14). Moreows, if b comer-
semce is s wwform with et # the oninal valse o oy she compoct mbset of K,
ﬁ-u.,mmn..@,ommm The vecor p il be called e bomegens-
20d volue o the

Remaxx 210 Tt s proved lﬂ[ﬁ'l.[lﬂ].[é!jlll) that in dimension one
the Glimir aheays exists and for every %€

'rr,s,»

l' 3
kin—;mnb«mllminxl.&mhcmmiqumhﬂwﬂ:m
G-convergenke.

It is possible 10 give explicit formulae on the mumbes p, only in some particular ca-
ses. For example, 115, ) = gl bls), then p = MU N(B), where M) = [ o) und

either Nib) = (M{1/6))™" if bix) # 0 for every x « I or Nib) = 0 if there exists 8 |
such that bixy) = 0.

In dimension > I, it is not true, in gencral. that (3) G-comverges (see Example
42 in Section 4).

Dersamon 22 (see [MLUI81: A sector p of RY i called o roation. oector of
he Poincart map T if there exit o sequence {py} € R” and & wibsoquemce n, of integers
such shat

Dal-n
w
The et of all rosacion vestons el be dewcted by AT,




R —
From the resubs of [18] and [12) we can easily get the follwing propertics of
T

Prorasmon 2.1; ) The st 5(T) it a o empdy, comected and. compact rbset of
R It is comsained in the comve bull of the ser

m n:n-{,.x-:m.r,,-‘m!%“].

£ [ = 1, thow the set {T) comics o oy ome el mumber (i, 5T) = {p) and
in this case we sl wrie §UT) = ).

€} Yn=2und T comes from a mfmb«mmmt.mdem
ST s conteived in & line throngh the

Tn the one dimensional case, we say that #(T) beloags 10 the class 3¢, if
mdrmm“pr.qummmrunhn{mm.z(
with a, 6 Q).

Lt us recall nor the folksing result which will be the mest impartant toal in the
demonstration of Lemma 3.1

Prorosmon 2.2 (sce (14 I/ GulR®) ond T} & 3, thew T s congite 10 4
sramlation & R— R with ¢ 'eC!, such thor gl +1)=glx) 41
VeeR 1n Tog oR,ug, whre Robr) =2 .1 ond 7o)

Mzz n]mmhmﬁwu Lhmmqﬂ{? g
‘ancl this is equivalent v the fast that there exist <on-
muCn.C;nn'h that €, <D, T,1) £ G, for cach re R, xa K.

Let n=1 Then the function fregll) &
the C®topology) into R and i i increasing (Le.

Resanx 2.3 id lb] (13, (4]
continuous from
iffgg MﬁT;}S#Tl]

Now we pass 1o funcioaale for which we consider the following notion of
Tconvergence:

Demmics 23 e 71 10 11,0) i s e and 0 (bt ol
o ebdectir Bl YT O o

Fy=Ne=-X" ‘h:,F
i for every xa X, for every sequemce & which temds to 0, it holds
) for vy sequence () comveriag o
F,Lrl(ﬂ‘ml.niP.kl.




=
B there cxite o smpuence () comvering fo x such shat
Fyls) = lim F, ().

Let us consider now two families of fumerionah ussociated w the spsem (1) and
equation (2):

® F.u)-JI:‘—ﬂ:%. z)[fa. reciur,

© s,m-ﬂ-.q(’? w[as, xecrm,

mun.wmm«n{k“ The funcionials G, are quadratic but they
arc ot positive definit.
From the ross of 4, we obtan 190 propostions which we wil eed in the ne-
x sections.

Puowosmon 23: [f fa Gl (R™*'F, F, are givon by (8), then there cxiss
10 Fo=Il- L") ImF.,
and
n r,m-J'wu'ndr‘ *sCHIF,
lbere s 4 momnegeive, eomves: fusction defined on R

Moreawer, the function 4 is giten by the formula
az) Ho= i ol0

where.

T
rJ”‘""“*""" {0} =0, HT) =T, *sCH{I0,TIF

The function & is ot in pencral quadratic, s it was shown inl3].
Prorosmon 24: I fe Cu R '), G, are given by (9), then then paists
(14 G.,-l(w!.‘lll)')mﬂ,.
and fanctional Gy & of the form
a5 Goln) = [ADw-Dudrde,  weC'il,




The matrix A & constant, symmeini, poitive semidefivite and for cvery Ta R0

(6] A= mElek u= Tk g, cm Gl peCLRIE

where.

il T = [ o+ fxios e
I

3. - Tim case o onaession 1

T this section we assume that # = 1 and we study the connectons among the
hm,unmpanhu:w{zxwml'wdmm
F. G,
m/ec_m’m.l * be the solations 1o the problem (3), (4], We known (see Re- |
mark 21 and Proposiion 2.1) that foe each xoe R

8l s—gt i D,
where x%(¢) = pr + 3, and AT} = {p}.
Lenacs 310 Let fo Gl (R, I 8,0 in L'} weakly, den the soquence of

1) reflt L) she
sromy Gcomrges 1o equation (6).

Proor: In ardet to prove the lmons, bt ', & > 0 be dhe sehuions of (19) soch
that y*10) = ,, where 7, =+ x,. We will show that y* —=x* in Cll). Let o*, £ > 0 be the
slrions 10 the probiem

i+ £ EJuti=0,  1eR. xeR,
o8}, ”

The sokations 3" of (3), (4) satisfy the relation v* (¢, x* () = x for eachs € R. Now, we
have the following relations

200 ai=rtiny ) = st ) = (0 - ' G 0, 0,
where Ge R and

(an :=j(»,-u,,ma)w(:.ru)l{/(é. ’T'"] u.u)})a Hthox=
‘

= f».:o.:'unb.umw. —x
P




e
Simce w11, 2) = (T, (=), for 2, reR, it bholds
22 020w D, (T )|y ey

Nor, e, suppose addionaly that f e G UT) e (T} & 2, We b see Re-
mark 22 thas under this assumption l}u- exists @ constant ¢ > 0 such that ¢
%D, (T*(21) % ¢ for cach n & 2 arsd = & K. These estimaions, relasions (20), (21], (22)
and the fact that r,—x, imply

R ]

Hence and from (18), we gt '~ in i)

Now, et us return to the general case: /& Gk, (R?), Let 4 > 0, By Remack 2.3, the-
e exid /i, e GLARY) sach thas /i < f; and
) petEpEpEpEpt e,

where p, = pl LAe i=]2
Lec s &2 0 be the solitions of the problems

=4[t

By the properties of £, and f; we have 2 (1} € y*ir) € 27 (), 1 & [ and by the fiest part of
the lerama, we know tht 2,17}~ 3, i = 1,2 amiformiy on . Because  was ar
birary, bence and from (23) # follows that ') —pt + 5, uniformby oo | W

Exasrir 3.1 Tt is easy to see, wsing Lemma 3.1 thar the soquence x° = fisfa} +

(x/2) strongly G-comverges to the equatian x° = N(MI/) + g).

Given a function /& Gl (R?), we. consides now the functionls ., Fy, given by
), (11). We know (e Propesition 2.3 that the sequence of functionals F, I“conser.
5 10 the functional F of the form (11) with o conwes, nonnegative function ¢ gven
by (12)

Tiwomm 3.4: Let = L. Thew #7) = {3 = 0).

Procr; Let, llkfm: «, .x * be the solations 1o {3), (4) and 1a (6], (4), respect.
ively, We know that x'—x" uniformly on compact sets and #T)= {p]. Since
Fix') = 0 we have Fole™) = 0 and by (10) we et gip) = 0.

are going 1o prove that  is 1 unique zoro poim of ¢ Lt us
llAtkﬂlmh =0, where y* ) = it + %, From (10}, we can find o
soquetice 34 € CU, £ > such that
24y y'=3" LN

aed i F,(y) = 0. Let us denote




T

sa.ng,«-nm’(n.afumud the sequence [y n.bmdoam.‘ln This
property und (24) imply y* —= % in CII). So. In particular 3* {0} —x,. Now, by virue
of Lemma 3.1, we have that () —p¢ 4 for cach 7. Sl i

Next, ket us consider the family of funcrionals G, given by (9).
We have the following

Thmonen 3.2 Let fe Clo (R¥). Them, there ccits a constant & € 10, 1] such that the
soguence (G,) s = L)) comventes i the functiona!

(25) Golw) -4‘[ [CUEEr P
P

where p i ibe rotation mumber of T.

Since in the case n = 1, the G-convergence s equivalent 10 the srong G-comver-
ence, the Theorem 3.2 is & particular case of Theorem 4.1
From formaulac (16), (17), and (25), it follows that

] k=,
I the sunamomous case the following propositien ghves an explict formula for the
constzat k&

Prorotmon 3.8: Le fe GuR) L doct mot depend o 1) and flx) # 0 for esch
seR Thes k= NUAUNGO L

Procw: Let us consider the case > 0. To calculate £, we use (26, Since we deal
with 2 comex functional, every solwion 1o the Eoler cquation is also s minimam
point. I our case the Euler equation is the following

{4 fleh), + (b /608, = 0
We look for ity sobutions in the form wie, x) = ¢ + ple) with & Gl (R). We have
fi) 4 fH 6} (x) = e. The periodiity of ¢ implics [ =0 mnd then o=

= N(,")m,fr‘ s i 1 given by (17) at the salu Eauler equs-
on, we find

k-Ju A = NN m

Resannst 3.0: 1F £ Gle (R (f docs nat depend an the space varisble i, then
dw L. Ta-particdar, /= 0 impbes k= 1.
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Rrsame 3.2: If!chlKJ(Idmmdcpeud:uﬂuko-DouE m(E} >0,
then k> 0. In fact from (16), (17) we have

s;w’l [t ek st 1 = .+ 0,0, g&C,‘,JR‘)JBa(E!.
1

Provosmmon 3.2 Iff & CLAR) ( f does mot depend o ¢, f10) = 0, fiz) > 0 i § and
Fla) = x* whem x == 0 e 2% 1, then & = 0

Puoor: We observe that
i:x‘n{[lil + Al )|y G rm]
:

and we ﬂmhummﬂmbwwmm s enough o take
Vi (0,1/2), e €' (1) such that ¢, i symmetric with respect ta x = 1/2, 0} =
= 1) = O and ¢ = 1/fin 1, 1 ~ &) fwith some positive small 4). Over the intervals.
10,2) and (1= 2,1) we define 4 in such o

_r._%{ ru fugpa | {Hﬂx)mnm]-n

4

‘The las conditon is casly sarsfed bocause of the assmprions on the funcrion . The-
refore the shove infimum is equal 1o zero and hence k=0 B

Now, our next objective is 10 obuin & sufficient and necessiry condition which
will ensure that & > 0. We have

Tieuowens 3.3: Let f & Cly R?), Thon, & > 0 T poissses an absolately continscns
with respect 0w inweriant wscasare with deesity i L& (R).

In order 10 prove Theorem 3.3, we put
:,m-'[mnm—w:'sp. heCLIR),

a=mn{D,LO)E)e P, o=max{D T, F)
and we need the following
Lunowa 3.2 I /e L R%), & = inf {Jo15)]4 @ GLAR)], dhen
ik €k S ok

Proar: that the function -+ T,(y) is increasing and D, T, C* (R, we
have ¢, > 0, ¢; > 0. Firstly, we will show that ¢, £, % k. By formulae (16), (17) and (26),




T = [ L, T+ T 0 TP D T by
;

where 1 = {is,3): tel, Tiyel)
Punting wir, 3) = (1, T,(3)) end using the Cauchy-Schwarz inequality, we find

that
Jw = [ DT 0 dedy 2. [t 5)dedy =
r ¥

o [ty = ,,J (ol 51 = el p1Vidy
i

because: wif, ) is L-periodic.
Now, since wl,y) = £+ 412, T, () with ¢ € Gl (R, puring 3y) = #0, 31, we.
cbisin ciky <
To prove: the wcond. incquaiy, we note: that
ke inf{f)|we ), XK= {ulalt,x) =t + $li0), §eLip (RO},

where Lipye (R¥) denotes the periodic Lipschits functions defined on R'. Nex, for
exch be Cy (R} we constrixe #(b) & 5K such that

@ Jiuth)) = cafo b

Nancl, e pu ) =)L =) £HHTy) 4 1) fox ral, 3o R sod et e
exiend 1 on the whoke R br

it 30 = [+ wli = (), TV
Finally, we define albbr, ) =wlr, T;™'y). The inequality (27) implies & < cxky.
Resuax 3.3: From the proof of Lemma 3.2 it i easy 10 obscrve that
ky = inf{fa(6)|6 & LL(R), b is [-pesiodic)
Proor or Timosese 3.3 Br].mnlz‘fmﬂn‘w"ﬂ'i\!lﬂ'_lﬂhgﬁ

kot 1o lelmU, where U: L)L), Ub=hoT -4 Now,
= (kerUi*)*, we have

Te (kecll*)* s kerlic

b e LRI 'fic,u;- n].

Hence, b > 0l there exists b e ker U* such that [5(y)dy = 0. s0 if there cxists b
-mu"nou.uu‘]mm-LN_,-M&-.&.mu- ke LD
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and B{T)DT~" = . The last equality means that blyldy is T inveriant messu.
e
4.« THE Cast oF DN
1 this part we: ramn our siention to the westorial ensc 4nd we prescat som gences:
lizations of the results chtained in the previous section.
We sturt with the following

Paceosmon 4.1t Let f& CL (R 'Y Suppose that the sequence of aquations (3)
Gcomverges 10 the equation (8), Thew 4p) =0,

Proar: memcwkm.mwmmumwm
o 13), {4} coaverges uniformly an { 10 the sobution x° of (6), {4). Therefoce from the
defiition of Idimis. Fy(x%) =0, which gives f{p} = 0, becsuse ¢ is nonnegati.
e w

Resiarc 4.1: 1 f Gl (R (/ does not depend on the space varisbie ], then we
can explicitly cakculute the funcion  given by formalae (12}, (13) and we get $15) =
= [~ MU, where M) = (MU}), ., M)

Lisosen 4.1: Lt feGLIR™ ' and for euch £ & R, let 1, be a poin i 1°. i for cach
seqrience (3lyun, the siguence (LR Tr, )i comoerpes 1o p. thon AATEE
=p y

The proaf of the lemma, being simple, s omitied,
I the -dimensional case we have the following relstionship beoween the Gocon
vergence and the rocation set for T

Prososmos: 4.2: Let 6 Gl (R *1)", The sequence of equations {3) siromgly G-
converges 1o (6) ff o(T) = {p}.

Procr: Suppose that oT) = {p}. Let " —= . linmediately from the defintion of
#AT) and. our assamprion, i follows that for each bounded sequence (7] we have
T*{p)fa —=p. Heace and by Lemma 41, we ger

AR

for each ¢ & 1. Since the set of solutions is compact in CUY the last convergence is uni-
form on |

To prove the convese, we assume chat the equation {3) strongly G-converges 10
(6) and ¢ @ 5(T). Then there exist sequences (5] ¢ R, s ® such that

T -x
et
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By the strong Groonwergiace, e b
T} =y x.- 2]_&

) aie -TF*’[;]]+[;}-—~p.

comvergers subsequence of (x, )" Thea all e sequence (28) comnverges
-ﬂl-mce,-, -

‘The fllowing proposition sitablidhes u relationship besween the set o(T) anc the

ALt fanctional (11),

Puorosnion 4.3 Let fe LR F,, Fy, § be given by (8), (11), {12). Then
comy (@(T)) ¢ {¢ = 0}

Pacor: Since the set {¢ = D} & convex, by Proposition 2.8, it is enough 1o peo-
e tat if p gy (T) (see (7)) then pa {4=0),

Let e vector such thatp = T, %) e s i1 constrt st
ee of salutions (T"’:ep.,)a.,qonnvmw 0 a sobution of (6

Firsaly, lex s observe that for s = /£, we can find a subsequence us:T"‘cm.J)_
converging to x°() = ps, ln'-ﬂ putting ¢ = 1/(k), by assumptions on py, p, we
have

s T-’w i

e subsequence (57) we
o T 1m0, Sine Fe® )= 0, then Fe®) = 0 snd this sophis

bt

nmurumacc,mﬂwmmmmmgrﬁumm&
ferendial equations correspanding 1o
o e f(4 8)m=0,  reR, xer,

10, %) = ), xe R,

We b

Lewas 42 2 Lt ¢ Gl R . S st b e of ctins () sty
Gieomerees o the aquetion (6). Then the soquence (u,) of sfutions f 30) comperyes in
LAY 1o+ fumction iy which &5 suluior 10

{..,4,-.;-». reR, xeR',

00 =2),  sek.
where p 1 givew by (6),




-

Pacxr: By the defintion of the strong Grcomvergence of (3) 10 (), we have

141 {4) —+.x + pt, umiformiy oo compace subsers of R * 1, Hence, (T,4)™! —»x = piin

the same sense, and inally a*(rx) = ST () tendt n L R"" ) wu(h0) =
=ds-p. W

Rusane 4.2 Tn f dont, Lemma evenil
the hypothesi of the strong G-convergence i replaced by the Gcomvergence

Exasars 4.1 Tt can be shown that iffe G, (R')", then the equations x* = ¥flx/o)
srongly G-comverges to the equation x' = 0, Tf denotes the gradient of £

Our next alm is 1o show the relationship between G-comvergence of equations (3)
and Icomvergence of functionals (3)

Teceowrsd 4.1 Let fa CLUR" 11" If the sequence of aguutipus {3) stromgly Gron-
venges o tbe equation (6), then dhere exists & comctant k e [0, 1] smeb that the equence of
Jfurctiomals (G,) gioen by (9) i s = L3N heommengent fo the functional

Gutuh =4 [ It )+ o fh) e,

e iy given by the equation: (6).

Pacar: We kown (e Proposition 24) that the I'ts = L (1) Mimit of (G}
exists and it 8 & ponnegative quadratic functional of the form (15), whers A is (r +
1% G + 1) constamt, posite semidcfinite and symmeiri marx (we denote
D= By e ) = ()

By Lemma 4.2, the sequence of Functions u’ f,x) = #((T/1"" (+}) converges in
L3 (U2} v0 w12, x) = s — po) for each 2 & CJ (R¥). Since G, (u') = 0, by 'convergence
Gy fa®) = 0, The last equality meam that A Da+ D = 0 a.c. for each regular solution
of the equation  + ps, = 0. From the arbitrarity of £, we deduce that Ao = 0 for
each w e R'T), w = {—avp,al 4 & RY, This meansthat x-x = 0 for each x =
=l )@ R, @ R puch that x, +pesy = 0.

Now, we define the t + 11 b + 1) maseix P (‘:)Il.pl. Stnoe thel s ades

i forms A+, Px-x are equal on the kyperplanc {x + px; = 0], there exists a con-
stant & = 0 such that

Avrxm EPxox = kg + pon |
for cach x = (.5 @ R 1. Hence and from the exphcit form of the Ilimit free
(16), for it x) = 1) we gtk =Aen Efw) 51 ®

Resanrs: 43 We ean repeat the proof of Theorem 3.3 and we obuin that the cle-
1608 4 f the marrx A i postive iff T passesses s sbsolutely continuous messure
with L, densicy.

Now, we introduce the notion of the limit directions.




o=

Desmamion 4.1: Ve say thet m & R i a i diection for the equation x” = 11, ),
FeGLOR"™ 1" i e i seguoncs (60 (), () € R ad v, @ R such et

T at 43,
amiormiy with pepect 10 1 om conpact sete. The set of all im directions i demoted
B

Revar 4.4 g (T) @ (3, (T) is defind in (7)), This fact follows immediately
fom the’ praot of Proposition, €3,
We have the following.
Puorostron: 4.4: Let f& CL (R 'V, Thew @ p(T),
Proor: If pe @, then there exist (g) Cled, () CR® and 5o & R such that
un,.((%]']--.m.[%)-u[%]=rr'ty.:--.[%]—w.
Hence and from the relation

T T
e
B Ti s B convergng. we bave'thit Lk 10 T). -
We conclude this section with the following importmt
Esasres 42 Letn = 2,5 G (R, cons. We consider the following sywm
of ordinary differential equations
x'=0,
B [,'q(%]. 0y =, 50 =35, £>0.
The schutions to (31) are given by the kormula
)= (e ta(2)).
Hence, ve can observe that = ¢T) = {10,r) & R Img). Then the cquacons
(31) do noe G-converge.
e, = cn e b = ) el B

explicily
equal to HT), Namely, we suppose Ee R, = (&, &), 421 = 0. From formula (13),
-«ch.-n,-l_)kz*mmrso Hence & = 0. Now, we

#r(0, &) = inf |

F:;— %f:ﬁrnnl': 0y=0, T) =T, xeCHIO,TIF].




— -

Jlm 5161 =0, we obtan & e iy This proves (= 0} (T and by Prope
sition 4.3, we hive that the two sets are identical.
The s = LH({31 Mimit of the sequence

Gl [ ve(3) ) sy
has the form
521 c.w:[uwa.,]—‘ + Uy = F1d ) driedy,
where §= Migh, ¥ = Mir').
The [l = L7 (0" Mimis of the sequence (G),, sadied in[1], has 0o integral
representation aned hence it is different frem the fimit (12).
The sobutions of the <corresponding firsc order partal differential equation
w4 e[ %)n =0,
w059t =fey),  peCHRY

are of the fom u* (£, y) = $ls, » — ¢ 5/0). The soqucoee (s}, comverges weakly in
LER) tw the function

sty = [ty — e,
i

even if the comesponding sequence of the equations of characicrisics does. ot
Geconverge.

3. - Omex qusmions

In this section we indicate the main problems related 1o our resslts bt sill ot
salved in the s-dimensional case. For other conjectures see(%).

Promiess 1 Iy it true that for a given /e GLIR® “'F°, 4 & G (R") the soltions
‘of (30 converge weakly in L (R"*") and marewver, that this weak limit bas a repre-
senuation of the type

fe ~ e,
b oG Eensre: whick: depemds il ot e aactbtts 15

Prontzs 2 T the sce. [ = 0} equal 1o the.set convs{T), whese i the coovex
fsnction. given by the formala (1237




s

Dacs the Gconvergence imply the strong G-convergence foe
.nrumhmf.q_ur“n
pw&nmndmby(lumupwdk‘w
rrjmshc,l?"r?hm we want to find cxamples
) =0

Some answers to these peoblems are given by Peisone in (291
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